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Statistical Mechanical Description of Supercritical
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The phenomena of supercritical fluid extraction (SFE) and its reverse effect,
which is known as retrograde condensation (RC), have found new and impor-
tant applications in industrial separation of chemical compounds and recovery
and processing of natural products and fossil fuels. Full-scale industrial
utilization of SFE/RC processes requires knowledge about thermodynamic and
transport characteristics of the asymmetric mixtures involved and the develop-
ment of predictive modeling and correlation techniques for performance of the
SFE/RC system under consideration. In this report, through the application of
statistical mechanical techniques, the reasons for the lack of accuracy of existing
predictive approaches are described and they are improved. It is demonstrated
that these techniques also allow us to study the effect of mixed supercritical
solvents on the solubility of heavy solutes (solids) at different compositions of
the solvents, pressures, and temperatures. Fluid phase equilibrium algorithms
based on the conformal solution van der Waals mixing rules and different
equations of state are presented for the prediction of solubilities of heavy liquid
in supercritical gases. It is shown that the Peng—Robinson equation of state
based on conformal solution theory can predict solubilites of heavy liquid in
superecritical gases more accurately than the van der Waals and Redlich-Kwong
equations of state.

KEY WORDS: conformal solution theory; equation of state; mixing rules;
mixtures; retrograde condensation; statistical mechanics; supercritical fluid
extraction.

1. INTRODUCTION

The concept of supercritical fluid extraction (SFE)/retrograde condensation
(RC) is not actually new. The SFE/RC phenomenon was first recognized in
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1879 by Hannay and Hogarth [3]. They discovered that solid compounds
could be dissolved in supercritical fluids having densities near that of a
liquid. The renewed interest in the SFE/RC process is based on the
appreciable increase in solvent power of supercritical fluids at temperatures
and pressures above, but not far removed from, their critical point. In
recent years, an understanding of interaction of the supercritical solvent
with condensed compounds (liquid or solid) has received much interest in
process extraction and the development of energy-related processes
[2, 17,237

When the supercritical fluid undergoes a sudden temperature or
pressure reduction, the special properties are often lost. Probably the most
important property lost at lower pressures is the solubility of some com-
pounds in supercritical fluids. The solubility decay of most organic substan-
ces at subcritical pressures proves to be exploitable in that a substance can
be extracted at supercritical conditions and precipitated by merely reducing
the pressure. Thus supercritical systems combine the useful qualities of
liquids and gases to produce a very versatile fluid. In order to demonstrate
the phenomena of the SFE/RC process and their relationship with the
phase equilibrium characteristics of mixtures, Figs. 1 and 2 are presented.
In Fig. 1, six different classes of binary mixtures are distinguished from
each other in PT diagrams by the shapes and number of their critical lines,
the existence or absence of three-phase lines, and the manner in which the
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Fig. 2. PT and a corresponding PY diagram of a petroleum reservoir fluid exhibiting
retrograde condensation [6, 22].

critical lines connect with the pure component critical points and three-
phase lines. In Fig.2A the PT diagram of a fluid mixture exhibiting
retrograde condensation is presented. Figure 2B consists of the pressure
versus gas phase composition of a heavy component of this fluid mixture at
three different temperatures. According to these figures for a given tem-
perature, above the critical solution temperature, with an increase in
pressure, the concentration (or solubility) of heavy components in the
supercritical gas will decrease. At higher pressures the solubility starts to
increase rapidly and it reaches a maximum at a pressure corresponding to
a region slightly above the retrograde region.

Compounds which dissolve in supercritical solvents tend to exhibit
their lowest solubilities in the solvent at the lowest pressures. As the
pressure rises, so does the solubility of the solute. Some solutes exhibit a
crossover effect in supercritical solvents at a certain specific pressure to
cach solute, or crossover pressure. The crossover effect is characterized by
higher solubilities of the solute at lower temperatures below the crossover
pressure and higher solute solubilities at higher temperatures above the
crossover pressure [30]. As the pressure continues to rise, so does the
solubility of the solute; this trend ends at the solubility peak, which is the
pressure at which the solute solubility in the solvent is the greatest com-
pared to any other pressure. When the pressure is above the solubility peak
pressure, the solubility of the solute decays with continued pressure
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increases. Such effects can be described utilizing the principles of statistical
mechanics, as demonstrated later in this report.

The presence of cosolvents or entrainers can sometimes enhance the
solubility of the solute as much as one or two orders of magnitude [31].
Typical cosolvents, such as ethanol, methanol, and acetone, increase the
solubility of solutes containing alcohol or other polar groups due to
hydrogen bonding between the solute and the cosolvent. On the other
hand, cosolvents can also form solid complexes with the solute, thus
reducing the solubility enhancement effect. Because some cosolvent-solute
combinations form complexes which lower the solubility of the solute, each
case must be individually studied to determine the optimum cosolvent. By
utilizing the principles of statistical mechanics such effects are
demonstrated later in this report.

Prediction of solubilities of heavy liquid hydrocarbon in compressed
nitrogen and methane gases based on van der Waals mixing rules and dif-
ferent equations of state [van der Waals (vdW), Redlich-Kwong (RK),
and Peng-Robinson (PR)] is performed later in this report. The
expressions of the fugacity coefficient for the above three representative
equations of state with the van der Waals mixing rules, which are based on
conformal solution theory, are used here to predict solubilities of conden-
sed compounds (liquid or solid) in compressed gases. The mixing rules
which are used here were derived using the conformal solution theory of
statistical mechanic.

The major requirement in the design of SFE systems is the choice of a
solvent which will cause a sharp change in the solubility of the solute due
to changes in pressure or temperature. Since an essentially infinite number
of supercritical solvents can be formed from the currently known com-
pounds, there is little hope of ever generating a sufficient amount of
experimental data to meet present, much less future, needs. Knowledge
about molecular thermodynamics of fluid mixtures consisting of molecules
with large molecular size and shape differences is often required for the
accurate prediction of solubilities of heavy solutes in supercritical solvents.
The present report is an initial effort toward the development of predictive
techniques for SFE/RC phenomena.

2. THERMODYNAMIC MODELING OF SFE/RC PHENOMENA

One can describe and model the phenomena of SFE/RC by utilizing
theories of asymmetric mixtures of statistical mechanics and ther-
modynamics. In general, there exist two statistical mechanical ways for the
development of theories of mixtures [8]. One way is through the use of
rigorous statistical mechanics and the incorporation of intermolecular
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potential energy function in its detailed form. The second way is through
the use of the conformal solution theory for the development of mixing
rules and the use of equations of state of pure fluids [9]. There has been
substantial progress made in the past two decades in the developments of
both rigorous statistical mechanics of mixtures and conformal solution
mixing rules [1, 8, 12, 14, 15, 26]. However, there is little or no infor-
mation available about intermolecular interaction parameters of the kinds
of asymmetric mixtures which are dealt with in the SFE/RC industries. As
a result, the utility of the rigorous statistical mechanical approach for the
analysis and prediction of SFE/RC phenomena is presently limited.

Conformal solutions refer to substances whose intermolecular poten-
tial energy functions, ¢,, are related to each other and to those of a
reference pure fluid, usually designated by the subscript 00.

¢ij:fg/¢oo(”/h},/3) (1)

For substances whose intermolecular potential energy function can be
represented by an equation of the form

¢[j: Ei/’[(Li//r)n - (L[j/r)m] (2)

and for which exponents m and n are the same as for the reference sub-
stance, the conformal solution parameters f;; and 4, will be defined by the
following relations with respect to the intermolecular potential energy
parameters E; and the intermolecular length parameter L;:

fzj:Eij/EOOa hij: (Li,'/Loo)3 (3)

The basic concept of the CST of mixtures is the definition of the conformal
solution parameters of the mixture f,, and k.., which are related to the
conformal solution parameters of the components of the mixture and
mixture composition according to the following equations:

f\fx :fxx(f[ja h[/; xi’ pa T)a hxx = hxx(ﬁ'j? hya xi’ pa T) (4)

Equations (4) are called the conformal solution mixing rules. Functional
forms of these mixing rules will be different for different theories of
mixtures as demonstrated in Table I. In Table I the one-fluid and also the
¢-fluid conformal solution mixing rules are reported for different mixture
theories [14]. In this table RMA stands for the random mixing
approximation theory [137], vdW stands for the van der Waals theory of
mixtures [9], HSE stands for the hard-sphere expansion theory [11],
DEX stands for the density expansion theory [12], CSA stands for the
conformal solution approximation theory [2], and APM stands for the



Table I. Conformal Solution Mixing Rules According to Different Theories [13]
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average potential model theory [13]. According to Table I DEX and CSA
mixing rules are density and temperature dependent, while the other mix-
ing rules are independent of p and T [14]. In the analysis made earlier by
other investigators it was demonstrated that the RMA and APM mixing
rules are valid for a mixture consisting of components with close molecular
sizes and shapes [ 14, 20]. The HSE mixing rules are actually for the excess
properties of mixtures over the hard-sphere mixture [11]. The DEX and
CSA mixing rules, which are composition-, temperature-, and density-
dependent mixing rules [12-14], require special thermodynamic con-
sistency rules in order to be applied for mixture calculations. In the present
report we utilize the van der Waals mixing rules in order to calculate the
solubility of solutes in supercritical mixed solvents. As demonstrated in the
next section the conformal solution van der Waals mixing rules, when
joined with the PR equation of state, give us an opportunity to perform the
accurate calculation of the solubility of heavy solutes in supercritical
solvents. In the formulation of a mixture theory we also need to know the
combining rules for unlike-interaction potential parameters which are
expressed by the following expressions [57:

f‘ij 1/ 1] -f;lj;l/,hl’hll 1/2

(5)
hy= (1 _li/){(h,!/a +hi*)2)

where k; and /;, are adjustable parameters.

Utilizing the conformal solution approximation (CSA) and assuming
that the scaled radial distribution functions (RDFs) between every two
species of a fluid mixture are all identical [9, 14], the following mixing
rules will be derived:

fxxhxx = Z Z xix/]ri/h[/
i
hoe=22 x;x;hy
L

where A, and f, are the conformal solution parameters of a hypothetical
pure fluid which can represent the mixture. Equations (6) are actually the
van der Waals mixing rules, which are well known.

With the aid of the conformal solution guidelines [8, 14], one can
develop mixing rules for the three representative cubic equations of state
(vdW, RK, and PR). The vdW mixing rules for the different equations of
state can be derived [8].

(6)

(1) The van der Waals equation of state can be written as

Z=Pv/RT=v/(v—b)—a/(vRT) (7)

840/8/4-4
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which was proposed by J. D. van der Waals [25] in 1873. The van der
Waals mixing rules will be in the following form:

a=y, > XXy
H (8)
b=3 3 x,x;b,
i

From Egs. (5), the following conformal solution combining rules can be

derived:
a=(1—k)b( /bu _]j)l/z 9)
by=(1~1;) {(b‘/3+b}/3)/2}3 (

(ii) The Redlich-Kwong equation of state [12] can be written as
Z = Pv/RT =v/(v—b)—a/RT**(v+b) (10)

The conformal solution van der Waals mixing rules can be derived as

{zzxxf%w}ﬁq;§M%%Fﬂ

b=y xxb;
i

The conformal solution combining rules for a; and b, will be the same as
Egs. (9).

(iii) The Peng—Robinson equation of state [18] is in the following
form:

(11)

z=v/(v—b)—a(T) v/{RT[v(v+b)+b(v—b)]} (12)

where
a(T)=a(T){1+ k(1 - T,3)}

a(T.)=0.45724(RT.)*/ P,
K = 0.37464 + 1.54226w — 0.2699w?
b=0.0778RT /P, w = Pitzer’s acentric factor

To extend the PR equation of state to mixtures, the following mixing rules
are used:

a=YY xx,a(T);  ay(T)="[a(T)a(T)]"*[1 —k,(T)]
T (13)

b=2x,-b,-
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In order to apply the conformal solution mixing rules for the PR equation
of state, thermodynamic variables must be separated from the constants of
the equation of state. Then the PR equation of state will be written as the
following [8]:
Z=Po/RT=v/(v—b)— {a/RT + ¢ — 2\/ac/RT}/{(v +b)+ (b/v)(v—0)}
(14)
where

a=a(T)1+x) and  c=a(T.)x*RT.
a.=a(T,)=0.4572(RT )%/ P,

Kk =0.37464 + 1.54226w — 0.26992>

b=0.0778RT/P., w = Pitzer’s acentric factor

Then the conformal solution van der Waals mixing rules can be derived as
the following [8]:

a=} ) x.Xa;
i

b=3 Y. x.x;by (15)
i

¢ ZZZ XX Cy
j

i

with the following conformal solution combining rules for a;, b, and ¢;:

(1 —ky) bylazayb;b,)?
(1= L)L (Y + b)) (16)
(1— "”lg/‘)[(cl!i/3 + C}j/3)/2]3

ay
by

Il

The above three representative cubic equations of state will be used to
predict solubilities of condensed compounds in supercritical gases. To
calculate the solubilities of heavy solutes in compressed gases, the fluid
phase equilibrium algorithms are used. Since the chemical potentials are
functions of temperature, pressure, and compositions, the equilibrium con-
ditions

pH(T P {y))=pi(T, Py {x;}),  i=1,2,.,n (17)

where u¢ is the chemical potential of component i in the gas phase and u€
is the chemical potential of component i in the condensed (liquid or solid)
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phase. For gas-liquid equilibrium calculations, the solubilities of the liquid
condensed phase in a supercritical gas can be expressed as the following:

yi=x$r/p7 (18)

where x; is the composition of component i in the liquid condensed phase,
¢! is the fagacity coefficient of component 7 in the liquid condensed phase,
and ¢9 is the fugacity coefficient of component i in the gas phase. For gas—
solid equilibrium calculations, the solubilities of the solid condensed phase
in a supercritical gas can be expressed as the following [12]:

yi= (PR/P)(1/4) 47 exp {J’; (v7'4/RT) dP} (19)

where ¢3*' is the fugacity coefficient of the solid condensed phase at
saturation pressure P%! of pure component i, and ¢; is the gas-phase
fugacity coefficient at pressure P of component i in the mixture. The vapor
pressure of the solid is small, and the fugacity coefficient of the pure solid
at saturation pressure is almost unity. Also, one can assume that v$°'d is
independent of pressure. Thus Eq. (19) can be converted to the following
form [127]:

yi=(P3/P)(1/¢,) exp{v (P — Pi*)/RT} (20)
In order to calculate the solubilities for both liquid and solid in super-
critical gases, the following expressions of the fugacity coefficient are used:

RTIn §,= jw [(8P/on,) 1, — (RT/V)]dV —RTIn Z (21)

For the vdW equation of state, the following expression for the fugacity
coefficient can be derived:

¢,=[RT/(v—5)]1(1/p)
X exp l:( —b+2) x_,-b,-j)/(v—b) -2 (Z xjai,)/(vRT)] (22)

The expression for the fugacity coefficient of the RK equation of state can
be written in the following form:

Ing,=In[v/(v—-56)]-InZ+ <2 Y ij,-j—b>/(v— b)
+ (a/RT*?) (—b +2% ij,-j> (1/6*){In[ (v + b)/v] —b/(v+b)}

— (1/bRT™?) (2ija{-j> In[ (v +b)/v] (23)
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The expression for the fugacity coefficient of the PR equation of state can
be written in the following form:

1n¢,.={<2zij,,—b>/b} (Z—1)—In(Z — B¥)
—(A*/2/2B%) {(1/a*) [(2 2 x,va!-,) +2RTY x,c,
—\/RT[2\/(a/c)ngc,_-,-+2\/(c/a) (2}: x/”f/)iu

_ (2 y x,bi,--b)} In[(Z + B* +/2B*)/(Z + B* —/2B*)]  (24)

where

a*¥*=q+cRT — 2\/(acRT)
A* =a*P/(RT)?
B*=bP/RT

The above equations can be utilized in order to perform phase equilibrium
calculations for the purpose of predicting the solubility of condensed
solutes in supercritical gases.

3. CALCULATIONS AND RESULTS

Using the van der Waals mixing rules for the three equations of state
[van der Waals (vdW), Redlich-Kwong (RK), and Peng-Robinson (PR)]
based on the conformal solution theory, the solubilities of heavy liquid in
compressed nitrogen and methane are reported in Tables II and III. The
solubilities of heavy liquid in compressed gases are calculated by using
Eq. (18). According to Tables II and III, predictions of the conformal
solution PR equation of state are closer (by one order of magnitude) to the
experimental data than those of the RK equation of state, while the predic-
tions by the RK equation of state are closer to the experimental data than
the predictions by the vdW equation of state. Tt is clear that the conformal
solution PR equation of state can predict the solubilities of heavy liquid
more accurately than the conformal solution vdW and RK equations of
state. In Table IV, the numerical values of binary interaction parameters
for the different equations of state are reported. The absolute values of

vinary interaction parameters (k;, /;, and m,) calculated by the conformal
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Table 1. Solubilities of Heavy Liquid (#n-Decane) in Compressed Nitrogen
Gas According to the Different Equations of State

y,x 103 ¢

System T(K) P (atm) EXP vdW RK PR
Nitrogen— 323 41.7 0416 24.93 3.66 0.380
n-decane 51.0 0.395 22.70 3.44 0.350
91.0 0.427 21.90 3.50 0.340
348 31.5 1.540 48.37 9.82 1.460
380 1.410 42.52 8.82 1.330
373 87.4 2.700 46.47 13.26 2.400
100.6 2.710 47.04 13.25 2.330
398 70.4 6.570 67.65 24.15 5.800
99.6 6.160 64.78 2245 5.060

¢ EXP, experimental values; vdW, van der Waals equation of state; RK, Redlich-Kwong
equation of state; PR, Peng—Robinson equation of state.

Table IIL. Solubilities of Heavy Liquid (n-Decane) in Compressed Methane
Gas According to the Different Equations of State

pyax 1032

System T (K) P (atm) EXP vdW RK PR
Methane— 323 60.1 0.558 17.40 3.440 0.360
n-decane 74.1 0.628 17.51 3.700 0.380
105.2 0.953 2321 4.990 0.460
348 88.2 1.710 29.08 8.300 1.110
107.8 2.190 33.87 9.480 1.190
373 72.5 3.570 42.37 14.81 2.740
88.2 3.780 42.72 15.16 2.670
398 75.4 7.010 67.53 25.81 6.090
84.8 7.180 101.5 25.71 5.880

¢ EXP, experimental values; vdW, van der Waals equation of state; RK, Redlich-Kwong
equation of state; PR, Peng—Robinson equation of state.
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Table IV. The Binary Interaction Parameters for Heavy Liquid (n-Decane)
and Compressed Gas (Nitrogen and Methane) Interaction as
Calculated by the Use of Different Equations of State

System EOS“ ks Iy My,
Nitrogen— vdW —5.3548 0.5966
n-decane RK —0.3970 0.3244
PR 0.2832 —0.0307 0.2395
Methane— vdW -3.0356 0.5655
n-decane RK —0.2940 0.1645
PR 0.1334 —0.0394 0.0444

“EOS, equation of state; vdW, van der Waals equation of state; RK, Redlich-Kwong
equation of state; PR, Peng—Robinson equation of state.
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Fig. 3. Solubilities of n-decane in compressed
methane at different temperatures vs pressures.
The filled cricles are the experimental data
points [29] which are used to calculate the
binary interaction parameters. The solid lines
are the results of the conformal solution PR
equation of state with the use of the binary
interaction parameters. The dashed lines are the
results when the binary interation parameters
are equal to zero.
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solution PR equation of state are smaller than those calculated by the con-
formal solution vdW and RK equations of state. It should be noted that an
accurate theory of mixture will produce interaction parameters which are
independent of temperature. The binary interaction parameters are
calculated by minimizing the following function, which is defined as
follows:

F= {Z (EXP'— CAL")/CAL’]2 (25)

i

where EXP is the experimental value, and CAL is the calculated value.

In Figures 3 and 4, the solid lines are the solubilities of heavy liquid
(n-decane) in the gas phasc along with the binary interaction parameters
and the dashed lines are the predictions of liquid solubilities in the gas
phase when the binary interaction parameters are set equal to zero. In Figs
4 and 6, the gas solubilities (methane and nitrogen) in the liquid phase are

©
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Fig. 4. Solubilities of n-decane in compressed
nitrogen at different temperatures vs pressures.
The filled circles are the experimental data
points [29] which are used to calculate the
binary interaction parameters. The solid lines
are the results of the conformal solution PR
equation of state with the use of the binary
interaction parameters. The dashed lines are the
results when the binary interaction parameters
are equal to zero.
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Fig. 5. The gas (methane) solubilities in the
liquid phase at different temperatures vs
pressures as calculated by the conformal
solution Peng-Robinson equation of state with
the use of the binary interaction parameters.
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Fig. 6. The gas (nitrogen) solubilities in the
liquid phase at different temperatures vs
pressures as calculated by the conformal
solution Peng—Robinson equation of state with
the use of the binary interaction parameters.
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plotted for different isotherms. The gas solubilities in the liquid phase are
decreased as the temperature is increased, while the liquid solubilities in the
gas phase are increased as the temperature is increased.

In a previous publication [8] it was demonstrated that the conformal
solution PR equation of state is capable of accurately correlating
solubilities of solids in supercritical gases. It was also demonstrated that the
interaction parameters appearing in the conformal solution PR equation of
state are constants and insensitive to the temperature ranges for which
experimental data were available. In the present report we utilize the
interaction parameters reported earlier [8] in order to study the effect of
mixed supercritical solvents on the solubility of solids as reported in Figs.
7-9. In these figures the mixed solvents consist of mixtures of carbon
dioxide and ethylene at different compositions in contact with three dif-
ferent solutes. According to these figures an additional important factor to
consider in order to predict the solubility of solutes in mixed solvents is the
solute—solute interaction parameters.

As demonstrated here, when the solute—solute interaction parameters
are ignored, solubility predictions are quite different from those when the
correct solute-solute interaction parameters are used. In general, the
calculations reported in Figs. 7-9 are indicative of the fact that the
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Fig. 10. Demonstration of variation of the solubility of 2,3-DMN

in carbon dioxide at supercritical, critical, and subcritical tem-~

peratures of carbon dioxide according to the conformal solution

PR equation of state.
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solubility of a solute in mixed supercritical solvents cannot be linearly
correlated with the solubilities in pure solvents and their compositions. In
other words, mixed solvents could either enhance the solubility of a solute
or reduce it, depending on the molecular interactive nature of the solvents
and solute under consideration. This observation introduces a new
challenge in the design and operation of supercritical fluid extraction and
retrograde condensation systems, which is the necessity of a search for
combination of mixed solvents and their composition for the optimum
design and operation of such processes.

Experimental observations [30, 32, 33] on a number of solid—gas
systems have exhibited a supercritical solubility decay of the solute after a
certain system-specific pressure was exceeded. This same phenomenon can
be observed using the conformal solution PR equation of state in
predicting the behavior of model systems. As can be seen from Figs. 10-13,
2,3-DMN and 2,6-DMN exhibit solubility peaks at temperatures above
and below the critical temperature of the solvent, the high-pressure
solubility decay being more extreme at temperatures above the critical tem-
perature of the solvent. In the cases where ethylene was used as the solvent,
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Fig. 11. Demonstration of variation of the solubility of 2,3-DMN
in ethylene at supercritical, critical, and subcritical temperatures
of ethylene according to the conformal solution PR equation of
state. The maxima of solubilities in this case are sharper than in
Fig. 10.
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a more pronounced solubility peak was generated compared to the carbon
dioxide solvent trials.

In the preliminary modeling and calculations reported in this paper we
have demonstrated the strength of statistical mechanical approaches for a
better understanding of the phenomena of SFC/RC. In addition to
experimental measurements there exist a number of theoretically important
questions to the answered for the full-scale industrial utilization of the
phenomena of SFC/RC in separation processes. These include (i) full
understanding of the molecular role of cosolvents and entrainers, (ii)
prediction of properties of highly asymmetric mixtures consisting of
molecules with large molecular size and shape differences, (iii) incor-
poration of hydrogen bonding and other association energies in the for-
mulation and calculation of solubilities, and (iv) development of analytic
approaches of statistical mechanics for extension of the ranges of prediction
to extreme conditions of pressures and/or temperatures.
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